
Solar Manual
Scientific Computing II

Final project 7

Emil Levo

UNIVERSITY OF HELSINKI
DEPARTMENT OF PHYSICS

Contents
1 Introduction 2

2 Methods 3

3 Results 5

4 Conclusions 9

References 10

1

1 Introduction
Our solar system formed approximately 4.568 million years ago consisting mass-wise
mainly of our star, the sun, and eight planets revolving around it. The system will
stay roughly like we know it to be today, until all of the hydrogen in the core of our star
will have transformed into helium through the fusion process.

The manner in which the celestial bodies of our system move in relation to each other
has been described during the ages in very different ways. The geocentric model of the
solar system was originally the most accepted one, before Copernicus desribed the system
as heliocentric in the 16th century. This picture was additionally altered when Kepler
realised that the orbits of the planets are not circular, but rather elliptic and the sun
is not located excactly in the center of all orbits, but at some focus point. From this
realisation Kepler went on to describe the motion of the planets with the what is now
known as Kepler’s three laws of planetary motion.

Later on Newton showed Kepler’s laws were derivable from his very own theory of grav-
itation, which describes the planetary motion to this day in a most satisfactory manner,
even though a more accurate theory exists. Einstein provided mankind with the most
accurate accepted theory to describe the orbits of celestial bodies, his general theory of
relativity.

The importance of describing orbits of planets in our system is quite important even from
just a very fundamental and existensial point of view for us humans, describing time.
The motion of our own planet around our sun has dictated the formation and evolution
of life and civilization as we know it on this earth. One year is defined by the time it
takes for our planet to accomplish one whole revolution around our sun. Additionally
understanding the motion of all objects in our solar system, impacts all human endevours
to reach out to space.

Planetary simulations are a great way of describing our planets orbits, to some extent.
One has to remember that even a small change in any parameter can hugely impact a
system over a great duration of time. Nevertheless, one can very conveniently approximate
the orbits of the planets in our system by computational means, which can be seen as an
easier option compared to experiment and observation. Even though Newton’s theory of
gravitation does not yield the most accurate results when describing planetary motion, it
still does it so extremely well that it can be effectively used in computer simulations to
yield some meaningful results for planetary motion in our solar system. In this work we
have used Newton’s theory of gravitation to describe the orbits in our solar system with
computer simulations.

2

2 Methods
Newton presented his law of gravitation in his work, the Principia, that was published in
1687. The law itself can be expressed in a simple vector form:

F21 = −G
m1m2

|r12|2
r̂12 (1)

Equation 1 states that the gravitational force exerted by object 1 upon object 2. G is the
empirically derived gravitational constant (≈ 6.674 · 10−11 Nm2

kg2), m1 the mass of object
1, m2 the mass of object 2 and |r12| the distance between the two objects. The masses
handled in this equation are point masses, and the force between them points along the
line intersecting both masses. To describe the movement of an object in a many body
system, like our Solar System, one needs to take into account the sum of all the forces
applied on the object by all other objects in the system. This means we write our force
of gravity in the form:

F = −G
∑
i ̸=j

mimj

|ri,j|2
r̂i,j (2)

The inequality in the subindex of the sum assures that the object will not exert a force
on itself. We can still write this equation in another form that describes the gravitational
field g(r) (acceleration of an object in the point r of the gravitational field):

g(r) = −G
∑
i ̸=j

mi

|ri,j|2
r̂i,j (3)

The form presented in equation 3 is the form we use to calculate the accelerations that
each object inherits from all others in the simulated system.

The program used for our simulations (named "Solar" for simplicity), is written in For-
tran 90 and can describe the motion of objects in an N-body system like our Solar System
by calculating the accelerations of all planets (and the sun) and predicting their trajec-
tories with the Velocity Verlet algorithm as presented in the instructions for the final
project.

The source code is divided into five different files:

1. calcforces.f90

2. calcenergy.f90

3. ingredients.f90

4. main.f90

5. start.f90

6. velverlet.f90

The file main.f90 is the main file of the program, and the rest are modules created for
modularity. 1) calcforces.f90 calculates the accelerations of all objects that are simulated

3

as described with equation 3. 2) calcforces.f90 contains functions to calculate the kinetic
and potential energy of each object and the total energy of the system. 3) ingredients.f90
reads the input file with the readin() subroutine and defines all data structures and
constants used by the program. It also writes a possible error message. 4) main.f90 calls
the subroutines from the other modules to run the simulation and prints to the screen
the initial conditions of the system and the predictions for the first step. 5) start.f90
creates the run() subroutine that runs the simulation and writes all data to the screen
and output file. 6) velverlet.f90 contains the functions that predict the next positions
and velocities by using the Velocity Verlet algorithm.

The positions, velocities and accelerations are described as vectors in a cartesian coordi-
nate system. The three properties are stored in arrays, that have a size defined by the
input file. The positions are in units of km, velocities km/s and accelerations km/s2. Also
the names, indexes and masses of the simulated objects are stored in arrays as read from
the input file. The masses of the objects are to be given in kg. The gravitational constant
is defined as 6.67408 · 10−20 Nkm2

kg2 in our simulations.

For succesful compilation all files described above needs to be included in the src/ direc-
tory. One can compile the code by using the provided compile.sh bash script or by using
the commands:

gfortran -c ingredients.f90 velverlet.f90 calcforces.f90 calcenergy.f90 start.f90
main.f90
gfortran -o solar ingredients.o velverlet.o calcforces.o calcenergy.o start.o main.o

mv solar ../run/

The above description can also be found in the src/ directories README file. The
created executable, named solar above, needs to be moved to the run/ directory.

The program can then by run in the run/ directory which should contain the executable
solar and the input file input.dat. The input.dat file needs to contain the number of
objects, timestep, number of steps, every n:th step to be printed to screen, every m:th
step to be written to the file output.dat and then all objects to be simulated with their
indices, masses, initial positions and velocities. For a succesful read of the file, it needs
to be formatted correctly and the parameters need to be in the right order. An example
input.dat is provided and is recommended to be used for succesful simulation runs. If
the simulation should fail, or the data seems off, be sure to check the errors.out file for
possible error messages. The format of the input and output files are further described in
the README file in the run directory.

The units for the quantities are described here:

1. Time in s

2. Positions in km

3. Velocities in km/s

4. Accelerations in km/s2

5. Masses in kg

6. Energy in kgm2/s2

4

3 Results
The simulations presented in this section were accomplished with initial data for all planets
and the sun obtained from the NASA HORIZONS Web-Interface. All positions and
velocities are from the date 15.12.2017. Note that the initial positions are barycentric,
i.e. the sun is not in the middle, but the center of mass. It is recommended to use the
same input.dat files for each part as is presented below, in order to reproduce the results
presented here, but feel free to change the initial positions and velocities (as long as they
are somewhat consistent with reality) to check that the code works.

1. The Jupiter simulations were accomplished with the input.dat file named JUPITER-
input.dat in the inputs directory. Only the timestep, number of steps and intervals
to write and print the data were changed for the simulations. Remember to rename
the input-file to input.dat in the run/ directory!!

(a) The period of Jupiter is plotted in Fig. 1. The timestep used in this simulation
was ∆t = 1000.0s.

(a) The x-coordinate plotted against time elapsed

(b) The x-coordinate plotted against the y-coordinate

Figure 1: The period of Jupiter

Table 1 shows the different timesteps ∆t used for the Jupiter simulations. As
you can see from the table, the timestep of ∆t = 1000.0 yields the period that

5

is closest to the accepted value of Tjupiter = 11.862 yr. Note that both a too
small and too big timestep gives a value that is differs from the accepted value
on the first decimal.

∆t [s] T [yr]
10.0 11.405
100.0 11.871
1000.0 11.8647
10000.0 11.876

1000000.0 11.900

Table 1: Table of the different timesteps used and the corresponding periods for Jupiter

(b) In part b) the system was simulated for one period for Jupiter. To reproduce
the same results, set ∆t = 1000.0s and the number of steps to 374343. The
resulting distance traveled in the x-direction can be seen in Fig. 2, where one
can upon more detailed inspection see that the final position of Jupiter is a
million km less than the original x-coordinate. In other words Jupiter has
moved under one full period of motion.

Figure 2: Simulating one period of Jupiter.

(c) The period of the Sun has been visualized in Fig. 3. The timestep ∆t = 1000.0s
was used and the system was simulated for 120 years. One period of motion
is also roughly 11 years, and the radius of the motion approximately a million
km.

6

(a) The x-coordinate plotted against time elapsed

(b) The x-coordinate plotted against the y-coordinate

Figure 3: The period of the Sun

2. (a) For approximating one year, we simulated one period of motion of the Earth,
(the idea being that the earth should complete one period in one year). The in-
put file is named TELLUS-input.dat in the inputs/ directory. The timestep
that yielded the most accurate result of T = 1.000 yr was ∆t = 50.0s, as can
be seen in Table 2.

∆t [s] T [yr]
10.0 0.9996
50.0 1.0000
100.0 0.9996

Table 2: Table of the different timesteps used and the corresponding periods for the Earth

(b) For approximating one month, we simulated one period of motion of the Moon
around the Earth (the idea being that the Moon should complete one period in
one year). The input file is named LUNA-input.dat in the inputs/ directory.
In this simulation the Earth is actually set exactly in the middle of the system,
and the moon at the accepted average distance from the earth with its average

7

orbital velocity. Table 3 shows that three timesteps, all of which gave a very
nice value for the orbital period of the moon, 27.01 days, when the accepted
value is 27.3.

∆t [s] T [days]
1.0 27.01
10.0 27.01
100.0 27.01

Table 3: Table of the different timesteps used and the corresponding periods for the Moon

3. For the final simulations we used the input SYSTEM-input.dat in the inputs/
directory.

(a) First the timestep ∆t = 1000.0 s was used and the system was simulated for
200 years. The orbits of the inner planets can be seen in Fig. 4 and the periods
can be seen in Table 4. The approximations for the periods are good to the
first decimal, after which they start to differ from the observational values for
some of the planets.

(a) (b)

Figure 4: The orbits of the inner planets, visualized with OVITO [1]

Planet Tsim [yr] Tobs [yr]
Mars 1.8907 1.8808
Earth 1.0004 1.0000
Venus 0.61283 0.61519

Mercury 0.24107 0.240846

Table 4: Table of periods of the inner planets

(b) Shortening the timestep to 10.0 s gives us a more accurate value for the period
of Mercury, T = 0.2410. Shortening it further to 1.0 s, gave a less accurate
value of T = 0.2420.

8

4 Conclusions
To summarize, this work presents a functioning computational method that applies New-
ton’s laws of gravitation to a many-body system. It has to be taken into account that
the initial values chosen for all problems presented above, are what they are because of
how the planets in our solar system have interacted for a very long period of time. So
the results we present for the binary systems, might differ from results when simulating
the whole system. For example, in part 3 the period of Jupiter was T = 11.863 which is
closer to the real value than the period we simulated in part 1 with the same timestep of
∆t = 1000.0.

So the initial parameters are for this program, the most decicive factor for our results
to coincide with reality. One other thing that influences our results in a bad way, is the
small perturbations and accuracy of the reals that the vectors in this program use. The
small perturbations can influence the system greatly given great periods of time.

A final note on the accuracy of these simulations can be given to everything that is missing
in the program. The planets are point masses that do not rotate around their own axes,
and there is a lot of other physical stuff missing from this solar system like asteroid belts
and well, poor Pluto. But still, given that there is a lot missing, the simple Newtonian
approach with point masses give us nice results for the periods of the planets, and we
were able to predict some of our most used measures of time.

9

References
[1] Alexander Stukowski. “Visualization and analysis of atomistic simulation data with

OVITO–the Open Visualization Tool”. Mod. Sim. Mat. Sci. Eng. 18.1 (2010), p. 015012.

10

	Introduction
	Methods
	Results
	Conclusions
	References

